High-frequency δ Scuti stars with TESS

Tim Bedding, Simon Murphy, Daniel Hey, Daniel Huber, Panda Li, Gang Li, Yaguang Li, Barry Smalley, Dennis Stello, Bill Chaplin, Isabel Colman, Jim Fuller, Eric Gaidos, Daniel Harbeck, J. J. Hermes, Andrew Mann, Daniel Reese, Sanjay Sekaran, Tim White, Jie Mu, Vichi Antoci, Tim Brown, Andrew Howard, Howard Isaacson, Jon Jenkins, Hans Kjeldsen, Curtis McCully, Markus Rebus, George Nicker \& Roland Vanderspek

Hi, Dr. Elizabeth?
Yeah, uh... I accidentally took the Fourier transform of my cat...

δ Scuti pulsators are common among A-type stars

Pápics (2013)

δ Scuti stars are very good clocks!

A PLANET IN AN 840 DAY ORBIT AROUND A KEPLER MAIN-SEQUENCE A STAR FOUND FROM PHASE MODULATION OF ITS PULSATIONS

Simon J. Murphy ${ }^{1,2}$, Timothy R. Bedding ${ }^{1,2}$, and Hiromoto Shibahashi ${ }^{3}$

Aims of asteroseismology:

1. fundamental properties of stars (masses, radii, ages)
2. probe stellar interiors in exquisite detail (convective overshoot, nuclear burning, internal rotation, magnetic fields)

p-mode oscillations are standing sound waves

$\longrightarrow \cdots \cdots--\cdots$	nodal line motion of gas

$$
n=1
$$

$n=20$

$$
n=2
$$

n is the radial order of the overtone

Why is mode identification so difficult in δ Scuti stars?

- not all modes excited
- rotation (+ ellipsoidal shape) spoil regular patterns
- (so do avoided crossings of mixed modes)

TESS 2-minute data (Sector 5) EX Eri

A typical Sun-like star

Advance Access publication 2014 February 17

High-frequency A-type pulsators discovered using SuperWASP ${ }^{\star} \dagger$

Daniel L. Holdsworth, ${ }^{1} \ddagger$ B. Smalley, ${ }^{1}$ M. Gillon, ${ }^{2}$ K. I. Clubb, ${ }^{3}$ J. Southworth, ${ }^{1}$
P. F. L. Maxted, ${ }^{1}$ D. R. Anderson, ${ }^{1}$ S. C. C. Barros, ${ }^{4}$ A. Collier Cameron, ${ }^{5}$ L. Delrez, ${ }^{2}$
F. Faedi, ${ }^{6}$ C. A. Haswell, ${ }^{7}$ C. Hellier, ${ }^{1}$ K. Horne, ${ }^{5}$ E. Jehin, ${ }^{2}$ A. J. Norton, ${ }^{7}$
D. Pollacco, ${ }^{6}$ I. Skillen, ${ }^{8}$ A. M. S. Smith, ${ }^{9}$ R. G. West ${ }^{6}$ and P. J. Wheatley ${ }^{6}$

$$
\text { about } 1 / 3 \text { observed with TESS 2-minute cadence }
$$

HD 28548

frequency (c/d)

KIC 6933899 ("Fred")
Sun-like star

HD 28548
δ Scuti star

MESA model mass=1.56

Nyquist frequency

> weak high-frequency peaks excited by turbulent pressure? (Antoci et al 2014)

Finding more stars

- downloaded all TESS short-cadence data (Sectors 1 to 9; PDC-MAP)
- computed amplitude spectrum
- considered distribution of peak heights above $30 \mathrm{c} / \mathrm{d}$; measure skewness (3rd moment; Murphy et al 2019)
- inspected échelle diagrams
- also looked at Kepler δ Scutis with short-cadence data
- total 60 stars so far

Finding Δv

Finding Δv

ENGINEERING TIP:
WHEN YOU DO A TASK BY HAND, YOU CAN TECHNICALLY SAY YOU TRAINED A NEURAL NET TO DO IT.

ENGINEERING TIP:
WHEN YOU DO A TASK BY HAND, YOU CAN TECHNICALLY SAY YOU TRAINED A NEURAL NET TO DO IT.

Δv varies with frequency

HR diagram (Gaia DR2) - these are young stars

some more complex patterns:

some more complex patterns:

some more complex patterns:

rotation

Young associations

- used Gaia DR2 space motions
- cross-matched with known moving groups, clusters and stellar streams:
-5 in associations: Octans (3), Cari
-1 in moving group: β Pic

- 1 in stellar stream: Pisces-Eridanae (HD 31901)

Pisces-Eridanae stellar stream

What next?

- can finally do detailed asteroseismology of (some) δ Scuti stars
- compare with models: ages and internal rotation
- TESS is observing many at 2-minute cadence - and even more when FFI long cadence is shortened to 10 minutes

Asteroseismology of δ Scuti pulsators is difficult!

Frequency (c/d)

Some δ Scutis are simple

- both radial ($\ell=0$)
- fundamental $(n=1) \& 1^{\text {st }}$ overtone $(n=2)$

Ziaali et al. (2019)

KIC 6933899 ("Fred")

These are not solar-like oscillations:

- much higher amplitude
- much lower n (do not obey the same $V_{\text {max }}$ scaling relation)
Δv varies with frequency

Rotation

- obtained high-resolution spectra of 14 stars with Keck/HIRES and LCO/NRES
- plus published $v \sin i$ for 5 stars
- more than half $v \sin i$ values below $70 \mathrm{~km} / \mathrm{s}$
- implies some (but not all) are seen close to poleon
- also lots are λ Boo stars

$10 \mathrm{~km} / \mathrm{s}$						
$\underset{26 \mathrm{~km} / \mathrm{s}}{ } \sqrt{ } \mathrm{M}$						
$43 \mathrm{kri/s}$						
Na $50 \mathrm{~km} / \mathrm{s}$						
$129 \mathrm{~km} / \mathrm{s}$. 1.						
$\begin{aligned} & 178 \mathrm{~km} / \mathrm{s} \\ & \hline \end{aligned}$						
$273 \mathrm{~km} / \mathrm{s}$.						
Wavelength (nm)						

PRELIMINARY

